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Abstract. In this paper, we consider the computation of a rigorous lower error bound for the optimal
value of convex optimization problems. A discussion of large-scale problems, degenerate problems,
and quadratic programming problems is included. It is allowed that parameters, which define the
convex constraints and the convex objective functions, may be uncertain and may vary between
given lower and upper bounds. The error bound is verified for the family of convex optimization
problems which correspond to these uncertainties. It can be used to perform a rigorous sensitivity
analysis in convex programming, provided the width of the uncertainties is not too large. Branch and
bound algorithms can be made reliable by using such rigorous lower bounds.
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1. Introduction

Convex optimization plays an important role in practice. Firstly, many applications
can be modelled as linear or convex problems. Secondly, convex optimization is
essentially applied in global optimization, where so-called convex relaxations are
solved sequentially within branch and bound frameworks. In order to discard sub-
problems containing no global optimal points, a lower bound of the optimal value
for the convex relaxation is required. There are several books which give substan-
tial attention to relaxation techniques for mixed integer nonlinear programming
problems and are recommended to readers. These include Floudas [3], Tawaralani
and Sahinidis [15], and the Encyclopedia of Optimization [4].

On a computer rounding errors occur which may effect the computed approx-
imation of an optimal solution. This effect depends on the algorithm and on the
problem. Especially ill-conditioned problems may influence the computed approx-
imation drastically, yielding a non-backward-stable approximation; that is, the ap-
proximation is not the exact solution of a slightly perturbed problem, because data
dependencies, due to the coefficients and the functions which define the convex
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problem, may allow only special perturbations on a small nonlinear manifold of
the input space.

Ill-conditioning is not a rare phenomenon in practice, even in the linear case. In
a recent study of Ordóñez and Freund [12] it is stated that 72% of the lp-instances
in the NETLIB Linear Programming Library [8] (which contains many industrial
problems) are ill-conditioned. After applying CPLEX 7.1 presolve (a preprocessing
heuristic for linear programming problems) 19% maintain the property of being
ill-conditioned. Hence, the computation of rigorous error bounds may be useful in
practice.

For linear mixed integer programming problems with exact input data it is
shown in a recent preprint of Neumaier and Shcherbina [11] how, the use of a
careful pre- and postprocessing together with interval arithmetic, can guarantee
safe forward error bounds for the solution. In [6] results for rigorously solving
linear programming problems with uncertain input data and unbounded variables
are contained. For the case of exact input data and bounded variables some res-
ults of Section 3 in Neumaier and Shcherbina [11] and Section 6 in [6] coincide.
Examples, where commercial lp-solvers failed, are presented in both preprints.

Our major goal is to show that similar results can be obtained in the nonlinear
convex case. It turns out that a rigorous lower bound for the optimal value of a
convex programming problem can be computed by postprocessing only the output
of a nonlinear solver. An engagement into the code of the nonlinear solver is not
necessary. It is shown that the error bound is very sharp provided that the com-
puted approximations are close to a Karush-Kuhn-Tucker point. A consequence is
that also non state of the art solvers (which may produce more frequently wrong
approximations) can be used in a safe manner by judging the output with the error
bound. This postprocessing algorithm needs in most applications only a fraction
of the computational work, which is required by the nonlinear solver. Moreover,
the algorithm is also applicable for sparse problems, degenerate problems, and
problems with uncertain input data.

The paper is organized as follows. Section 2 contains notation and elementary
definitions of interval arithmetic. In Section 3 the basic theory is presented, and
in the following section, as a special case, quadratic programming problems are
considered. Section 5 presents algorithms for computing a rigorous lower bound,
and in Section 6 an illustrative example is studied. In Section 7, some remarks are
given how infeasibility of convex optimization problems can be rigorously verified.
Finally, some conclusions are given.

2. Notation

Throughout this paper we use the following notation. R, Rn, Rn
+, and Rm×n denote

the sets of real numbers, real vectors, real nonnegative vectors, and real m×n
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matrices, respectively. Comparisons �, absolute value ���, min, max, inf and sup
are used entrywise for vectors and matrices.

The coefficients of a real m×n matrix A are denoted by Aij , its columns by
A�j , its rows by Ai�, and its transpose by AT . For subsets I�J of indices A�J is the
submatrix of A with columns A�j where j∈J , AI� is the submatrix of A with rows
Ai� where i∈ I , and AIJ is the submatrix of A with coefficients Aij where i∈ I
and j∈J .

We require only some elementary definitions about interval arithmetic which
are described here. There is a number of textbooks on interval arithmetic and self-
validating methods which can be highly recommended to readers. These include
Alefeld and Herzberger [1], Moore [7], and Neumaier [9,10].

If V is one of the spaces R, Rn, Rm×n, and v�v∈V, then the box

v �= �v�v� �=�v∈V � v�v�v� (1)

is called an interval quantity in IV with lower bound v and upper bound v. In
particular, IR, IRn, and IRm×n denote the set of real intervals a= �a�a�, the set of
real interval vectors x= �x�x�, and the set of real interval matrices A= �A�A�,
respectively. The real operations A�B with �∈�+�−�·�/� between real numbers,
real vectors and real matrices can be generalized to interval operations. The result
A�B of an interval operation is defined as the interval hull of all possible real
results, that is

A�B �=∩�C∈ IV � A�B∈C for all A∈A�B∈B�� (2)

All interval operations can be easily executed by working appropriately with the
lower and upper bounds of the interval quantities. For example, in the simple case
of addition, we obtain

A+B= �A+B�A+B�� (3)

Interval multiplications and divisions require a distinction of cases. For interval
quantities A�B∈ IV we define

midA �= �A+A�/2 as the midpoint� (4)

radA �= �A−A�/2 as the radius, (5)

�A� �= sup��A� � A∈A� as the absolute value, (6)

A+ �= max�0�A�� (7)

A− �= min�0�A�� (8)

Moreover, the comparison in IV is defined by

A�B iff A�B�

and other relations are defined analogously. Real quantities v are embedded in the
interval quantities by identifying v=v= �v�v�.
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In interval arithmetic linear systems of equations with inexact input data are
treated by working with an interval matrix A∈ IRn×n and a right hand side b∈
IRn. Frequently, the aim is to compute an interval vector x∈ IRn containing the
solution set

��A�b� �=�x∈Rn � Ax=b for some A∈A�b∈b� (9)

This is an NP-hard problem, but there are several methods that compute enclosures
xwithO�n3� operations for certain types of interval matrices. A precise description
of such methods, required assumptions, and approximation properties can be found,
for example, in Neumaier [9]. Roughly speaking, it turns out that for interval matri-
ces with 
I−RA
<1 (R is an approximate inverse of the midpoint mid A) there
are several methods which compute an enclosure x, and the radius radx decreases
linearly with decreasing radii radA and radb. For the computation of enclosures in
the case of large-scale linear systems the reader is referred to Rump [14].

3. Rigorous Lower Bound of the Optimal Value

We consider the convex optimization problem

min f �x�
s.t. G�x��0

Hx=h
x�x�x

(10)

where f �Rn→R, G�Rn→Rm, H ∈Rl×n, h∈Rl, and f and all components
Gi of G are convex functions. The simple bounds xj <xj may also be infinite.
We partition the set of indices �1�����n� into the four sets J±, J+, J−, and
J denoting the indices where both simple bounds are infinite, the simple upper
bounds are infinite, the simple lower bounds are infinite, and both simple bounds
are finite, respectively.

The optimal value is denoted by f ∗, and optimal points are denoted by x∗. We
assume that for the functions f and G the gradients, or in the nonsmooth case sub-
gradients, are available, which we denote by "f�x� and "G�x�=�"G1�x������
"Gm�x��. The convexity implies that for each x̃∈Rn the inequalities

f �x��f �x̃�+"f�x̃�T �x− x̃� for x∈Rn� (11)

and

G�x��G�x̃�+"G�x̃�T �x− x̃� for x∈Rn� (12)

are satisfied.
The following lemma provides a (possibly infinite) lower bound of the optimal

value for problem (10).
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LEMMA 1. Let x̃∈Rn, ỹ∈Rm
+, z̃∈Rl, and define the defect

d �="f�x̃�+"G�x̃�· ỹ−HT z̃� (13)

Then

f ∗ �= f �x̃�+�G�x̃�−"G�x̃�T x̃�T ỹ+hT z̃

+xTd++xTd−−"f�x̃�T x̃
(14)

is a lower bound of f ∗, that is f ∗
�f ∗.

Proof. The inequalities (11) and (12) provide affine lower bound functions of f
and G, and by replacing in (10) the convex functions f and Gi for i=1�����m
by their affine lower bound functions, we obtain a linear programming problem

min f �x̃�+"f�x̃�T �x− x̃�
s.t. G�x̃�+"G�x̃�T �x− x̃��0

Hx=h
x�x�x�

(15)

which has the property that each feasible solution for problem (10) is feasible for
(15), and the optimal value of (15) is a lower bound for the optimal value of (10).

This linear program can be written in the form

min "f�x̃�Tx+�f �x̃�−"f�x̃�T x̃�
s.t. "G�x̃�Tx�−G�x̃�+"G�x̃�T x̃

Hx=h
x�x�x�

The corresponding dual problem is

max �G�x̃�−"G�x̃�T x̃�T y+hTz+
xTu−xTv+f �x̃�−"f�x̃�T x̃

s.t. −"G�x̃�y+HTz+u−v="f�x̃�
y�0� u�0� v�0�

(16)

If we define

ũ �=d+� ṽ �=−d−�

then ũ�0, ṽ�0, and from ỹ�0 we obtain immediately that ỹ�z̃�ũ�ṽ are
feasible for the dual problem with the objective value f ∗, which is by duality theory
less than or equal f ∗. �

Notice that this lower bound may also be infinite, because the infinity of the simple
bounds may yield infinite terms xTd+ or xTd−. Especially, it follows that infinite
terms are avoided, if dj�0 for j∈J−, dj�0 for J+ and dj=0 for
j∈J±. Hence, the quality of this lower bound depends not only on the quality
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of the approximation x̃, but also on the defect d, and therefore on the quality of ỹ
and z̃.

Frequently, in applications optimization problems are defined by functions which
depend on uncertain parameters. We model these uncertainties by intervals; that is,
we assume that the functions depend on parameters p, and p∈p∈ IRk. This
yields a family of optimization problems

min f �x)p�
s.t. G�x)p��0

H�p�x=h�p�
x�x�x�

(17)

depending on p∈p, where we assume:

(a) For every p∈p the functions f �x)p� and G�x)p� are convex.
(b) For each fixed x̃∈ �x�x� enclosures

�f �x̃)p� � p∈p�⊆ f ∈ IR�
�G�x̃)p� � p∈p�⊆G∈ IRm�
�"f �x̃)p� � p∈p�⊆" f ∈ IRn�
�"G�x̃)p� � p∈p�⊆"G∈ IRn×m

(18)

can be computed.
(c) The coefficients of the linear equation are allowed to vary within intervals;

that is H�p�∈H∈ IRl×n and h�p�∈h∈ IRl.

The enclosures (18) can be calculated on a computer by means of interval arith-
metic and automatic differentiation (see Griewank [5], and Rall and Corliss [13]).
We mention that in the backward mode the computational costs for computing the
gradient of G is at most five times the cost for one function evaluation of G. This
property holds true independently of the dimension n.

The following theorem provides the theoretical basis for algorithms comput-
ing a rigorous lower bound of the optimal values for the family (17) of convex
optimization problems.

THEOREM 1. Let x̃∈Rn, y∈ IRm with y�0, z∈ IRl, and let

d �=" f+"G ·y−HT ·z� (19)

Suppose further that

(i) dJ− �0, dJ+ �0, and
(ii) for every "f ∈" f , "G∈"G, and H ∈H there exists y∈y and z∈z

such that the equations

�"G·y−HT ·z+"f�J± =0 (20)

are fulfilled.
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Then

f ∗ �= min
{
f+�G−"GT x̃�T ·y+hTz

xT
JuJ+d+JuJ++xTJuJ−d−JuJ−−" fT x̃

} (21)

is a finite lower bound of the optimal value for all optimization problems of the
family (17), that is

f ∗
�f ∗�p� for p∈p� (22)

Proof. Let p∈p be chosen fixed. Because of assumption (ii) and the inclusion
conditions (18), it follows that there exist y�p�∈y and z�p�∈z such that the
equations

�"G�x̃)p�·y�p�−H�p�T ·z�p��j+�"f �x̃)p��j=0 (23)

are fulfilled for all j∈J±.
Hence, the components of the defect

d�p� �="f�x̃)p�+"G�x̃)p�·y�p�−H�p�T ·z�p� (24)

are equal to zero for j∈J±. Lemma 1 yields

f ∗�p� � f �x̃)p�+�G�x̃)p�−"G�x̃)p�T x̃�T y�p�+h�p�T z�p�
+xTd+�p�+xTd−�p�−"f�x̃)p�T x̃�

(25)

Now the terms xjd
+
j �p� and xjd

−
j �p� are equal zero for j∈J±, and from

assumption (i) it follows that

dj�p�∈dj�0 for j∈J−

and

dj�p�∈dj�0 for j∈J+�

Hence, the products xjd
+
j �p� and xjd

−
j �p� vanish for j∈J− and j∈J+,

respectively. Therefore,

xTd+�p�=xTJuJ+d
+
JuJ+ and xTd−�p�=xTJuJ−d−

JuJ−

and these scalar products are finite. Therefore, the right hand side of (25) is finite.
The inclusion properties of interval arithmetic yield that for each p∈p the right
hand side of (25) is contained in the interval quantity

f+�G−"GT x̃�T ·y+hTz+xTJ d
+
J +xTJ d

−
J −" fT x̃�

Hence, f ∗ is a finite lower bound of the optimal values for this family of
optimization problems. �
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The lower bound (21) is computable for large-scale linear and convex optimiz-
ation problems, because the computation of the enclosures (18) exploits the sparse
structures of functions just as the interval matrix-vector operations for computing d
and f ∗. Degenerate problems (10) (that is, more than n constraints are active) also
can be rigorously bounded from below, provided the local solver has computed
sufficiently good approximations.

The output of a local solver applied to the convex optimization problem (10)
consists of an approximate optimal solution x̃∈Rn, approximate Lagrange mul-
tipliers ỹ∈Rm for the inequalities G�x��0, multipliers z̃∈Rl for the equa-
tions Hx=h, and multipliers ũ and ṽ for the simple bound constraints x�x
and x�x, respectively. The following theorem shows that, roughly spoken, the
lower bound (21) is sharp, provided all calculations are executed exactly and an
Karush-Kuhn-Tucker point is known.

THEOREM 2. Assume that the vector p of parameters is known exactly, x̃, y �= ỹ,
z �= z̃, ũ and ṽ satisfy the Karush-Kuhn-Tucker conditions of (10) exactly, and all
computations in Theorem 1 are executed exactly, then f ∗=f ∗.
Proof. The Karush-Kuhn-Tucker conditions for problem (10) are

"f�x̃�+"G�x̃�· ỹ− ũ+ ṽ−HT z̃=0� (26)

ỹ�0� ũ�0� ṽ�0� (27)

G�x̃�T · ỹ=0� (28)

�xj− x̃j�ũj=0 for all j with finite xj� (29)

�x̃j−xj�ṽj=0 for all j with finite xj� (30)

Assuming exact computations, we obtain from (19)

d="f�x̃�+"G�x̃�· ỹ−HT · z̃�
Since x̃j cannot be equal to xj and to xj , for each index j one of the Lagrange

parameter ũj or ṽj must be equal to zero. If

ṽj >0 then ũj=0� x̃j=xj� and ṽj=−dj >0� (31)

or if

ũj >0 then ṽj=0� x̃j=xj� and ũj=dj >0� (32)

Hence,

xTJ d
+
J = x̃TJ ũJ � and xTJ d

−
J =−x̃TJ ṽJ � (33)

Using equation (26) for evaluating −"f�x̃�T x̃, a short computation shows that

f ∗=f �x̃�+xTd++xTd−− ũT x̃+ ṽT x̃�
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In the case dj=0 equation (26) yields −ũj+ ṽj=0, implying �−ũj+ ṽj�x̃j=0.
Hence,

f ∗=f �x̃�+xTJ d
+
J +xTJ d

−
J − ũTJ x̃J+ ṽTJ x̃J =f �x̃��

�

4. Quadratic Programming

As a special case, we consider the standard quadratic programming problem

min cTx+ 1
2x

TQx
s.t. Hx=h

0�x�x�
(34)

where the input data are known exactly; that is, c∈Rn, h∈Rl, H is a l×n matrix,
Q is a positive semidefinite n×n matrix, and the simple bounds x=0�x∈Rn

are finite. The following corollary is a consequence of Theorem 1.

COROLLARY 1. Let x̃∈Rn, z̃∈Rl, and

d �=c+Qx̃−HT z̃� (35)

Then the optimal value f ∗ of the quadratic programming problem (34) is bounded
from below by the finite value

f ∗
�f ∗ �=hT z̃− 1

2
x̃TQx̃+xTd−� (36)

Proof. Since there are no inequalities and the simple bounds are finite, all as-
sumptions of Theorem 1 are satisfied. Because all input data are real, the interval
operations coincide with the real operations, and from formula (21) we obtain

f ∗ � cT x̃+ 1
2 x̃

TQx̃+hT z̃+xTd−−�c+Qx̃�T x̃
= hT z̃− 1

2 x̃
TQx̃+xTd−�

Since x∈Rn is finite, f ∗ is finite. �

In order to compute a rigorous lower bound for the quadratic programming problem
(34), we assume that a quadratic programming routine has computed an approxim-
ate optimal solution x̃ with Lagrange multiplies z̃. Then, using only the rounding
modes on a computer, the following small program suffice:
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ALGORITHM 1.

roundup;
-=HT z̃)

.= 1

2
x̃T �Qx̃�

rounddown)
d=c+Qx̃−-)
�=xTd−)
f ∗=hT z̃+�−.)

The fact that only rounding modes are necessary was first observed for the standard
linear programming problem with exact input data and finite simple bounds by
Neumaier and Shcherbina [11]. We see that this observation holds also true for
standard quadratic programming problems.

If the input is uncertain, but can be bounded by interval quantities c∈c, h∈h,
H ∈H, and Q∈Q, we obtain

f ∗=min�hT z̃− 1
2
x̃TQx̃+xTd−�� (37)

where

d �=c+Qx̃−HT z̃�

5. Algorithms

Next, we describe two algorithms for computing a rigorous lower bound for the
optimal value of convex optimization problems which are based on the previous
analysis.

In this section it is assumed that a local nonlinear solver has computed an
approximation x̃ of an optimal point x∗, and Lagrange parameter ỹ and z̃ cor-
responding to the inequalities G�x)midp��0 and the equations H�midp�·x=
h�midp�, respectively. No assumptions are made about the quality of the approx-
imations. Moreover, we assume that the interval quantities f , G, " f , and "G are
computed rigorously.

Firstly, we discuss the case where all simple bounds are finite. Then the condi-
tions (i) and (ii) of Theorem 1 are automatically satisfied, and the following small
algorithm suffice:

ALGORITHM 2.

1. Set y �= ỹ+, and z �= z̃.
2. Compute d �=" f+"G ·y−HT ·z.
3. Compute f ∗ �=min� f+�G+"GT x̃�Ty+hTz

+xTJ d+J +xTJ d
−
J −" fT x̃

}
�
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Theorem 1 requires that y�0. Hence, if the local solver has computed untruly
negative components ỹi, we set this component equal to zero in the first step. Then
all assumptions of Theorem 1 are satisfied, and f ∗ is a rigorous lower bound of the
optimal value. Notice that there occurs no overestimation during the computation
of d, since the radii of y and z are equal to zero.

The computation of f ∗ requires O��m+l�·n� interval operations, and addi-
tionally the operations for computing the interval quantities (18). Hence, we obtain
a very cheap postprocessing algorithm.

For large simple bounds and radp>0 the lower bound f ∗ may be poor, because
the terms xTJ d

+
J or xTJ d

−
J may be large. Then it is useful to treat large simple bound

components in the same way as infinite bounds (see below).
Secondly, we discuss the case where J± is empty, but the index sets J−

and/or J+ are nonempty. Then, additionally, condition (i) in Theorem 1 must be
satisfied. We investigate first this condition for an index j∈J− yielding the
inequality

dj �=�" f�j+�"G ·y�j−�HT ·z�j�0� (38)

This inequality may be not true for the choice y �= ỹ+ and z �= z̃+.
The reason is that good approximations x̃, ỹ, and z̃ for the midpoint problem of

(17) approximate very well the optimal solution of the linearized midpoint problem
(16). Hence, if �xj � and �xj � are large, then maximizing the term xTu−xTv in
the objective function of (16) leads in many cases to uj=vj=0, and for the
constraint in (16) it follows that for p=midp

−�"G�x̃)p�· ỹ�j+�H�p�T · z̃�j=�"f �x̃)p��j�

Therefore, the defect satisfies

dj�p� �=�"f �x̃)p��j+�"G�x̃)p�· ỹ�j−�H�p�T · z̃�j=0�

and 0=dj�p�∈dj , violating frequently the inequality dj�0.
In order to enforce the inequality (38), the idea is to compute approximations ỹ

and z̃ of a perturbed problem in a way such that

dj�p��−/j� /j >0 (39)

is fulfilled. This is equivalent to

−�"G�x̃)p�· ỹ�j+�H�p�T · z̃�j��"f �x̃)p��j+/j� (40)

Then, for the midpoint problem, the inequality (39) is satisfied, and, in order that
for all problems in p this inequality holds true, we have to choose /j large enough.

Our suggestion is

/j=2�rad" f�j+rad�"G · ỹ�j+rad�HT · z̃�j
+/∗��"f�x̃)p�j �+��"G�x̃)p��·�ỹ��j+��H�p�T �·�z̃��j �� (41)
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This definition takes into consideration the interval input data p and the accuracy
/∗ of the nonlinear solver, which is applied to the midpoint problem p=mid p.
For an index j∈J+ similar arguments lead to

dj�p��/j� /j >0� (42)

which is equivalent to

−�"G�x̃)p�· ỹ�j+�H�p�T · z̃�j�"f�x̃)p�j−/j� (43)

Now combining (40) and (43) results in computing componentwise a vector
c�/�, where

cj�/� �=


�"f �x̃)p��j+/j� if j∈J−

�"f �x̃�p��j−/j� if j∈J+

�"f �x̃)p��j otherwise,
(44)

and /j are defined by formula (41). Then with an lp-solver we compute for the
perturbed linearized dual problem

max �G�x̃)p�−"G�x̃)p�T · x̃�T ·y+h�p̂�T ·z+
xTu−xTv

s.t. −"G�x̃)p�·y+H�p�T z+u−v=c�/�
y�0� u�0� v�0�

(45)

approximations ỹ, z̃, ũ and ṽ. As before, we set y �= ỹ+ and z �= z̃, and test the
conditions (i) of Theorem 1. If the conditions are not fulfilled, then the process is
repeated by doubling the parameters /j and updating once more c as in (44).

Summarizing, we obtain the following algorithm.

ALGORITHM 3.
1. Compute /j by formula (41) for j∈J−∪J+.
2. Compute c�/� by formula (44).
3. Compute with an lp-solver approximations ỹ and z̃ for the optimal solution of

the perturbed problem (45). If the lp-solver gives a warning and cannot find
approximations, then STOP: No rigorous lower bound.

4. Set y �= ỹ+, and z �= z̃.
5. Compute d �=" f+"G ·y−HT ·z.
6. If condition �i� of Theorem 1 is satisfied, then STOP: Lower bound is f ∗=

min
{
f+�G−"GT x̃�T ·y+hTz+ xTJ d

+
J +xTJ d

−
J −" fT x̃

}
�

7. Set /j=2/j for j∈J−∪J+, and goto step 2.

It follows that in each iteration (i.e. one execution of step 2 to step 7) the parameters
/j are doubled, yielding in few iterations (in many cases only between one and
three) either a rigorous lower bound in step 6 or a STOP in step 3. Notice that
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Figure 1. The set of feasible solutions for the degenerate problem.

the main computational costs for this bound are required by solving the perturbed
linearized dual problem (45) in step 3. However, these costs are small compared
to the expenses of the nonlinear solver for computing approximate optimal solu-
tions of the convex problem (10). Moreover, lp-solvers are much more robust than
nonlinear solvers.

If a lower simple bound �xj � is very large, then the inequality xj�xj can be
treated as one of the inequalities G�x��0, and the index j can be put into J−.
This equivalent transformation has the advantage that the term xjd

+
j vanishes, per-

haps leading to a reduction of the overestimation. Analogously, large upper simple
bounds may be handled.

For variables xj with j∈J± the linear interval system (20) must be solved. A
detailed description for solving such systems can be found in [6]. For avoiding the
solution of this interval system a seemingly good modification would be to describe
free variables as the difference of two non-negative variables. But transformation
leads to an ill-posed linear programmingproblemwhich contains in each neighbour-
hood of the input data problems with empty feasible domain. This would imply the
lower boundminus infinity.1

6. Example

For the purpose of illustration of the previous analysis, we consider the convex
optimization problem

1I wish to thank Arnold Neumaier for this hint.
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min p1x
2
1 + p2x

2
2 + �p3x3−2�2

s.t. p4x1 + 2p5x3 − 2p6 � 0
p7x2 + 2p8x3 − 2p9 � 0

0�x1� x2� x3�2

(46)

The set of feasible points is illustrated in Figure 1 in the case pi=1 for i=
1�����9.

Obviously, in this case the optimal point is x∗=�0�0�1�T with optimal value
f ∗=1. The point x∗ is the intersection of four facets in the three-dimensional
space implying that x∗ is degenerate. This is not a simple degeneracy caused by
redundant constraints, since deleting one of the above constraints changes the set
of feasible solutions.

Writing down the Karush-Kuhn-Tucker conditions, and observing that the con-
straints xi�2 for i=1�2�3 and x3�0 are not active for x∗, it follows that the
corresponding Lagrange multipliers are zero, and we obtain the conditions

2x∗
1 + y∗1 − y∗3 = 0

2x∗2 + y∗2 − y∗4 = 0
2�x∗3−2� + 2y∗1 + 2y∗2 = 0

(47)

Using x∗=�0�0�1� yields

y∗1 =y∗3� y
∗
2 =y∗4� y

∗
1 +y∗2 =1 (48)

which has, due to the degeneracy, no unique solution.
To simplify matters for the following illustration of Algorithm 2, we assume that

the local nonlinear solver has calculated the exact optimal solution and multipliers

x̃=x∗=�0�0�1�T � ỹ=�y∗1�y
∗
2�

T =
(

1
2
�
1
2

)T

(49)

In order to illustrate the effect of interval input data, every parameter pi is allowed
to vary in the interval �1−r�1+r� independently from the other parameters pj
with i �=j; that is, we look on interval parameter pj . For the radius we assume
0�r <1.

In the first step of Algorithm 2 we set y �= ỹ+=�1/2�1/2�T . For the second
step, the enclosures (18) must be calculated:

�f �x̃)p� � p∈p� ⊆ p1x̃1+p2x̃2+�p3x̃3−2�2

= ��1−r�1+r�·1−2�2

= �1−2r+r2�1+2r+r2�=� f�
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�G�x̃)p� � p∈p� ⊆
(

2�1−r�1+r�·1−2�1−r�1+r�
2�1−r�1+r�·1−2�1−r�1+r�

)

=
(
�−4r�4r�
�−4r�4r�

)
=�G�

�"f �x̃)p� � p∈p� ⊆

2p1 · x̃1

2p2 · x̃2

2p3�p3 · x̃3−2�




=

0

0

�−2−4r−2r2�−2+4r−2r2�


=�" f�

�"G�x̃)p� � p∈p� ⊆



 �1−r�1+r�

0

�2−2r�2+2r�


�




0

�1−r�1+r�

�2−2r�2+2r�






=� "G�
Hence, we obtain

d =

0

0

�−2−4r−2r2�−2+4r−2r2�


+"G ·




1

2
1
2




=




�
1
2
− r

2
�
1
2
+ r

2
�

�
1
2
− r

2
�
1
2
+ r

2
�

�−6r−2r2�6r−2r2�


�

Hence, d−=�0�0��−6r−2r2�0��T , and in step 3 of Algorithm 2

f ∗=min�f+�G−"GT ·

0

0
1


�T




1

2
1
2


−" fT


0

0
1


−


2

2
2




T

·d−�

yields f ∗=1−24r−r2.

7. Rigorous Infeasibility Test

In branch and bound algorithms a subproblem is discarded if the local nonlin-
ear solver detects infeasibility (see for example Borchers and Mitchell [2]). It is
not a rare phenomenon that especially nonlinear solver find no feasible solutions,
although the subproblem contains such ones. A consequence is that the global
minimum solutions may be cut off.

The first possibility for verifying rigorously that a convex subproblem (relax-
ation) contains no feasible solution, is to proceed as in the two-phase-method:
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nonnegative artificial variables are introduced as customary, and then the sum of
the artificial variables is minimized. This auxiliary problem remains convex. If
the optimal value is greater zero, then the problem is infeasible. A rigorous lower
bound of this optimal value can be computed with the previous algorithms. If this
rigorous lower bound is greater zero then we have obtained a safe certificate of
infeasibility. Two-phase nonlinear solvers provide an approximate solution and
appropriate Lagrange multipliers, which may be directly used for computing a
rigorous lower bound. An additional call for the auxiliary problem is not required
in this case.

Another approach for verifying infeasibility for linear programs is described in
Neumaier and Shcherbina [11]. It is based on the observation that the dual of an
infeasible problem is unbounded or infeasible, and typically lp-solvers compute a
ray exposing this. This information can be used for a certificate of infeasibility.
One way to extend this method to the convex case is to use the linear relaxation
(15).

8. Conclusions

We have described algorithms for computing a lower bound for the optimal value
of convex optimization problems. The input data of these problems may be un-
certain. This lower bound (i) is rigorously valid, (ii) it uses only approximate
solutions of the nonlinear solver, (iii) nothing is assumed about the quality of the
approximations, (iv) it requires, at least for finite simple bounds, only a fraction
of the computational work for solving the convex problem, and (v) it can also be
used to verify infeasibility. We think that many branch and bound algorithms can
be made completely rigorous by using such postprocessing tools, whereupon the
computational time increases only by a small amount in most cases.
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